Moore–Penrose inverse positivity of interval matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interval Pseudo-Inverse Matrices and Interval Greville Algorithm

This paper investigates interval pseudo-inverse matrices. We state an Interval Greville algorithm and extensions with bisections for calculation of interval pseudo-inverse matrices and give the examples of interval pseudo-inversion application for estimation of solutions of systems of linear equations, and show applications for estimations of solutions and pseudo-solutions in a least squares se...

متن کامل

Positivity and Conditional Positivity of Loewner Matrices

We give elementary proofs of the fact that the Loewner matrices [ f(pi)−f(pj) pi−pj ] corresponding to the function f(t) = t on (0,∞) are positive semidefinite, conditionally negative definite, and conditionally positive definite, for r in [0, 1], [1, 2], and [2, 3], respectively. We show that in contrast to the interval (0,∞) the Loewner matrices corresponding to an operator convex function on...

متن کامل

Generalized Drazin inverse of certain block matrices in Banach algebras

Several representations of the generalized Drazin inverse of an anti-triangular block matrix in Banach algebra are given in terms of the generalized Banachiewicz--Schur form.  

متن کامل

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

Inverse Young inequality in quaternion matrices

Inverse Young inequality asserts that if $nu >1$, then $|zw|ge nu|z|^{frac{1}{nu}}+(1-nu)|w|^{frac{1}{1-nu}}$, for all complex numbers $z$ and $w$, and equality holds if and only if $|z|^{frac{1}{nu}}=|w|^{frac{1}{1-nu}}$. In this paper the complex representation of quaternion matrices is applied to establish the inverse Young inequality for matrices of quaternions. Moreover, a necessary and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2012

ISSN: 0024-3795

DOI: 10.1016/j.laa.2011.07.012